

AVT-355 Research Workshop on Intelligent Solutions for Improved Mission Readiness of Military UxVs

Distributed Sensing and Resilient Datalinks for UAS/UxV

Vivek Lall , Chief Executive, General Atomics Global Corporation, United States

Outline

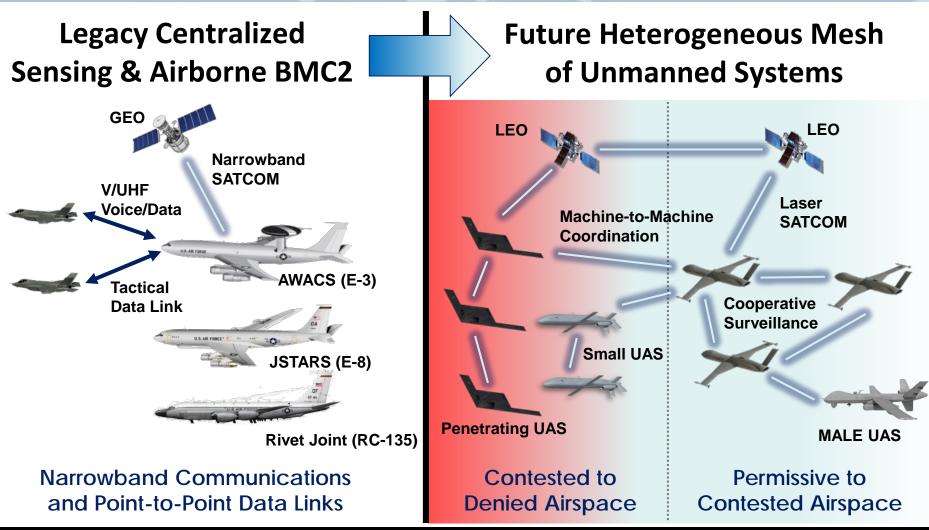
- Threats and Challenges
- Confluence of Enabling Technologies
- Persistent Airspace Control by Multiple Airborne Nodes (PACMAN) Architectural Vision
 - Distributed Sensing
 - Resilient Communications
 - Variable & Collaborative Autonomy

• Summary

Threats and Challenges

- Modern threats (e.g. multi-domain, hybrid, cyber and asymmetric) demand persistent awareness across threat spectrum
- Fading relevance of monolithic and vulnerable Cold War-era platforms
 - Unable to provide the scalability or agility to counter adaptive adversaries
 - Costly to operate and maintain
 - Distributed, service-oriented architectures have supplanted need for centralized airborne Battle Management Command & Control (BMC2)
- Information superiority requires connecting disparate systems with varied waveforms and protocols
 - Legacy platforms must be interoperable with modern systems
 - ➢ No single waveform or protocol will "rule them all"

Modern threats drive operational needs that can't be met by aging monolithic solutions

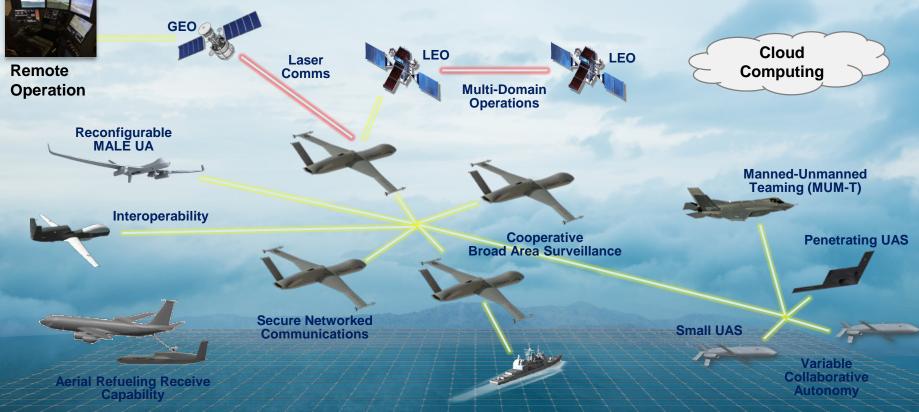

Confluence of Enabling Technologies

• Persistent unmanned systems

- Increasingly automated to improve effectiveness and reduce manning
- Ability to stay airborne for weeks with aerial refueling
- Networked communications with enhanced performance and resilience
 - Low latency, high-throughput, self-forming mesh networks
 - Low latency, Low Earth Orbital (LEO) satellites
 - High-throughput laser communications
- Distributed sensing and cloud computing
 - Software-defined, broadband multi-function apertures
 - Secure cloud services with high-performance computing & data analytics
- Variable & collaborative autonomy
 - Artificial Intelligence and Machine Learning

Advances in technologies enable new approaches to ISR&T that counter modern threats

Mesh of heterogeneous unmanned systems provides a more robust and scalable architecture where every node contributes to ISR&T and connectivity functions

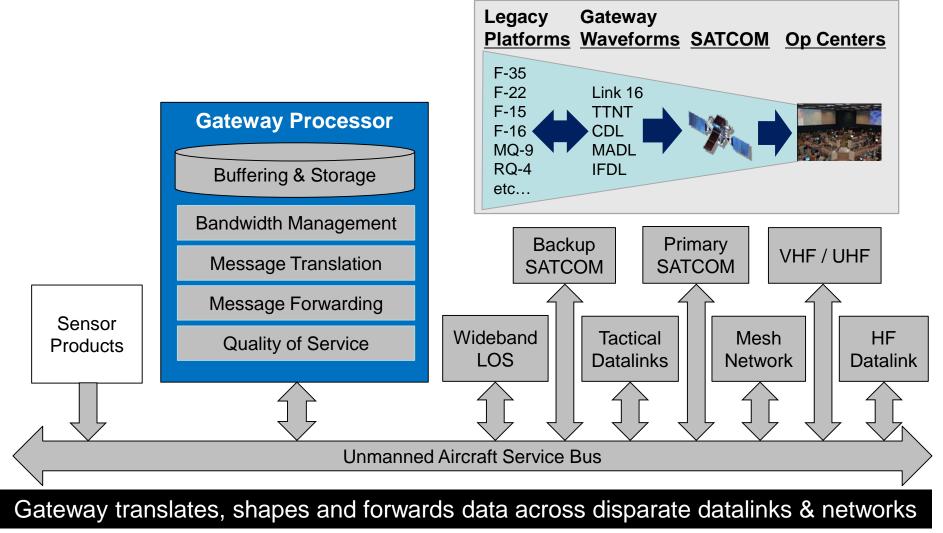

NATO

OTAN

Persistent Airspace Control by Multiple Airborne Nodes (PACMAN) Architectural Vision

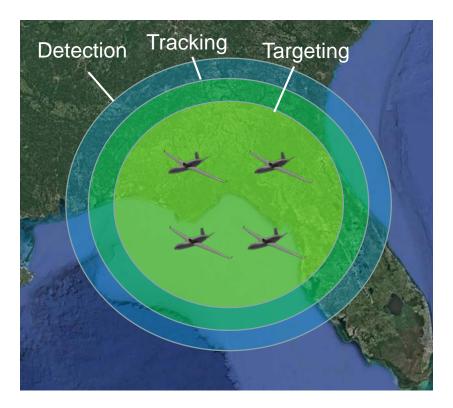
Multi-domain, multi-orbital surveillance and communications architecture that is more resilient, effective and affordable than traditional approaches

Resilient Communications


- Redundant and diverse secure communications
 - Primary and secondary SATCOM, providing spatial and spectral diversity
 - HF Beyond Line-of Sight (BLOS) data link for C2 without SATCOM
- Technologies and concepts to mitigate possibility of signal detection and exploitation
 - High Throughput Satellite (HTS) Spot-Beams improve protection from jammers outside of spot beam
 - Frequency-agile SATCOM to swap satellite frequencies in flight
 - Jam-resistant laser communications with LPI/LPD
- Communication gateways to establish resilient Line-of-Sight (LOS) network without reliance on SATCOM

Diverse protections against signal detection, jamming and cyber threats promote resilient communications

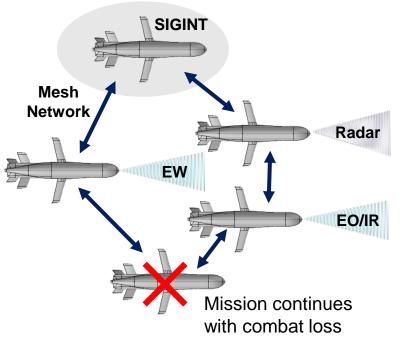
Airborne Communications Gateway



Disaggregated Sensing

- Spatially distributed architecture of cooperative and interoperable UA
- Diverse set of complementary payloads
 - High confidence target identification with multi-spectral sensors
- Flexible broad area coverage
- Improved target location accuracies
- Robust to loss of a single platform
- Scalable and adaptable
- Overwhelms adversary by complicating their targeting and jamming

Disaggregated sensing enables flexible broad area surveillance and targeting



Variable & Collaborative Autonomy

SCIENCE AND TECHNOLOGY ORGANIZATION

NORTH ATLANTIC TREATY ORGANIZATION

- With collaborative autonomy, UA Team works together to accomplish an objective
- Each team member can have its own "personality" in heterogeneous swarm
- Autonomous modes include Formation Flight, Dynamic Routing, Attrition Compensation, and Sensor Management
- Variable autonomy sets autonomy level according to mission and risk acceptance
 - Higher autonomy levels selected for contested operations to limit or eliminate RF emissions

Heterogeneous Swarm With Multi-Ship Collaboration

Variable and collaborative autonomy enhances survivability and mission assurance

NATC

OTAN

PACMAN Features and Benefits

Features	Benefits
Distributed and Networked Sensors	 Resiliency against modern threats Operable across the threat spectrum from Phase 0 to Denied Operations Accurate and timely target identification Fast and highly-precise multi-platform targeting Diverse sensors for enhanced situational awareness Scalable and reconfigurable architecture
Airborne Communications Gateway	 Message translation and cross-banding capabilities connecting modern and legacy systems Backhaul of high-bandwidth data through laser SATCOM or line-of-sight datalinks Serve disadvantaged users and dynamically shape data to fit available resources
Open System Architecture	 Interoperability Rapidly upgradeable capabilities Obsolescence avoidance Reduced life-cycle cost
Redundant, Diverse and Secure Data Links	 Assured (rapid, reliable and resilient) communications in all threat environments, including SATCOM-denied
Variable Collaborative Autonomy	Sustain operations across threat spectrum with greater autonomy in contested environments to minimize required bandwidth and enhance survivability
Cloud Computing & Data Analytics	 Leverages external high-performance computing and vast databases for secure and scalable processing to acquire knowledge from all-source intelligence

Summary

- Modern threats require more scalable & resilient architectures to counter them
- Enabled by recent advances in technology, GA-ASI's PACMAN architecture promotes wide area sensing and interoperability across threat spectrum
- Based on a heterogeneous mesh of unmanned systems, our multi-domain PACMAN architecture supports ISR&T and connectivity functions that are:
 - Agile and adaptive to changing threats and priorities
 - Resilient to adversary jamming, detection, and interception
 - Scalable to complexity of threats and size of AOR
 - More affordable than traditional approaches